SCHWARTZ 2009 Emlékverseny A TRIÓDA díjra kitűzött feladat ADY Endre Líceum, Nagyvárad, Románia 2009. november 7.

> Mottó: "Ha a mérési eredmények nem egyeznek az irodalmi adatokkal, akkor a mérőkészülékben, vagy a mérési módszerben van a hiba. A fizikus ilyenkor megkeresi a hibát. Ha nem találja, akkor vagy nem ért hozzá, vagy egy majdani Nobel-díjas kísérletével állunk szemben...

dr. Bartos-Elekes István

Az elektron fajlagos töltésének meghatározása a magnetron módszerrel

A. A kísérleti berendezés a következőkből áll:

- 1. Vákuumdióda: egy 3IL18II típusú elektroncső, a belsejében létrehozott magas vákuum biztosítja a katód által kibocsátott elektronok szabad, ütközésmentes mozgását. A dióda katódja egy vékony cső, anódja egy, a katóddal koaxiálisan elhelyezett henger. A katódot a belsejében található izzószál melegíti. A melegítéskor a katód elektronokat bocsát ki. Az anód potenciálja pozitív lévén a katódhoz képest, vonzza ezeket az elektronokat és így egy I_a erősségű anódáram jelenik meg. Felépítés szempontjából az ezüstszínű henger az anód, mely koncentrikus az elektroncső üvegházával, míg a katód ennek a hengernek a belsejében található.
- 2. "Didactica" típusú tápforrás: $24V_{eff}$ és $6V_{eff}$ váltakozó feszültségek előállítására szolgál. Az egyenirányított és stabilizált $24V_{eff}$ a tekercset táplálja, míg a $6V_{eff}$ biztosítja a dióda fűtőfeszültségét.

- **3. Tekercs**: a B mágneses indukciójú mágneses tér létrehozására szolgál, és a dióda foglalata körüli fekete gyűrűre kell helyezni, **koaxiálisan** a diódával. A tekercset az **elektronikus stabilizáló áramkör** táplálja.
- **4. Elektronikus stabilizáló áramkör**. Két megkülönböztetett állapota van, melyeket a kapcsolás jobb alsó részén levő zöld LED is jelez:
 - a. Várakozási üzemmód. 1.3 V, nem szabályozható feszültséggel (a LED nem világít).
 - b. Aktív üzemmód. 1.5 A-ig terhelhető, változtatható feszültségű egyenáramforrás (a LED világít). Ebbe az állapotba való átkapcsolás a START felirat feletti két huzal ujjunkkal való, 1-2 s-ig tartó érintésével érhető el (a LED alatt). Ezután a LED világítani kezd, és a következő 8-10 s-ban a potenciométer skáláján beállított feszültséget szolgáltatja. Azután a LED lassan kialszik és a berendezés átvált a várakozási üzemmódba.

A berendezés baloldalán három, felirattal is jelzett kivezetés található: AC 24V (24V váltóáram) AC com (váltóáram, közös kivezetéssel) AC 6V (6V váltóáram). Ezek a kivezetések a "Didactica" tápegység három megfelelő kivezetésével vannak összekötve. A 6Vos feszültséget a tápegység baloldali kivezetése szolgáltatja, a közös kivezetés középső banánhüvelyhez kötött. Az áramerősséget ennek a feszültségnek és a tekercsen jelzett R ellenállás értéknek a segítségével számoljuk ki ($I_0=U_0/R$).

Az elektronikus stabilizáló áramkör szerepe hármas:

- Az egyenirányítás zajszintjének csökkentése 20 mV_{pp}-ig (V_{pp}: az oszcilloszkópiában peak-peak, csúcstól csúcsig, voltokban kifejezett feszültség).
- b. A tekercs egyenárammal történő, pár másodpercig tartó áramellátásának biztosítása, a túlmelegedés elkerülése végett. Újraindítás minimum 1 perc után, ha a tekercs le-hűlt. Várakozási üzemmódban a stabilizáló áramkör hűtőbordája 35-40 °C-ig meleg-szik fel.
- c. A dióda anódáramkörének U_a stabilizált és a P₂ potenciométerrel szabályozható feszültséggel való táplálása. A potenciométernek (trimmer) a beállítását ne változtassuk a kísérlet alatt, mert azt beállították a berendezés hitelesítésekor. A hitelesítés folyamán, a berendezést úgy állították be, hogy az anódáram 1 mA-nél valamivel kisebb legyen a milliampermérő méréshatárának megfelelően.
- 5. RXN-303D-II típusú kettős, stabilizált áramforrás. Három egymástól teljesen független áramforrással rendelkezik, kettő szabályozható a 0..30V intervallumban, egy pedig rögzített 5V feszültségű, mindhárom áramgenerátoros módba jutással rövidzár-védett (a rövidzárási áram előre beszabályozható).
- 6. TR 0163 típusú hangfrekvenciás generátor. Áthidalt T híddal megépített szinuszjel-generátor. A 20Hz..200kHz sávban ad folytonosan szabályozható, maximálisan 10W teljesítményű jelet, amit jól használhatunk a soros RLC áramkör tanulmányozására. A beépített 4 digites frekvenciamérő pontossága elegendő a mi kísérleteinkhez.
- Kondenzátordekád. Változtatható kapacitású doboz. A lépésköz nF-tól μF-ig növelhető. Az egyes lépések pontossági osztálya ± 0,5%.

8. Mérőműszerek. Analóg és digitális műszerek, egyesek nagy pontosságúak. A bemeneti ellenállásuk 10 MΩ, elégségesen nagy ahhoz, hogy a kisáramú (µA nagyságrendű) áramköreink működését lényegen ne befolyásolják.

9. Összekötő huzalok.

B. Konstrukciós adatok

1. 3Ц18П típusú vákuumdióda:

- A katód külső átmérője: $d_1 = 0.9 \text{ mm}.$
- A katód hasznos hossza: $l_{c} = 6.1 \text{ mm.}$ ٠
- Az anód belső átmérője: $d_2 = 9.8 \text{ mm}.$
- Az anód külső átmérője:
- $d_3 = 10.9 \text{ mm.}$ Az anód hossza: $l_a = 20.9 \text{ mm}.$
- Az anód az üvegcső belsejében van, a külső áramkörhöz a cső felső részén található fémsapkával csatlakoztatható. A katód és a fűtőszál a cső foglalata segítségével csatlakozik a kapcsoláshoz.

2. Az elektromágnes tekercse:

- Külső átmérő: $D_2 = 40 \text{ mm}.$
- $D_1 = 24 \text{ mm}.$ Belső átmérő: ٠
- a =30 mm. Szélesség:
 - Menetszám: =1600.n
- Az egyes tekercs ellenállása a címkéről olvasható le (körülbelül 27Ω).
- Az I₀ árammal átjárt tekercs által keltett B mágneses indukció a tekercs induktivitásából és az I_0 áramerősségből számítható ki.
- 3. Gyorsítófeszültség:
 - Az anódárammérő műszer zsinórját a GND-re kötve a gyorsítófeszültség U_a=0. ٠
 - A műszer zsinórját az **anod**-ra kötve a gyorsítófeszültség U_a=19.5V.
- C. Kísérleti eredmények. Amikor a fizikus egy új eszközzel találkozik, azt különböző kapcsolásokban tanulmányozza annak érdekében, hogy jobban megértse működési elvüket. Ebben a dolgozatban kevésbé ismertnek tűnik a dióda és a mágneses tér létrehozására szolgáló tekercs.
 - A dióda gyorsított üzemmódban. Az alábbi kapcsolás segítségével felvettük a dióda 1. voltamperes karakterisztikáját. A mérési eredmények az alábbi táblázatban láthatók.

A dióda fékezési üzemmódban. Az előbb, U_a=0,0V-nál egy igen kis értékű anódára-2. mot figyelhettünk meg. Az áram létrejöttének tisztázására az anódfeszültséget negatív irányba is eltoltuk. A fékezési üzemmódban az alábbi kapcsolást használtuk. A két tápforrás segítségével 0 mV...-1000mV között finoman szabályozható fékezőfeszültséget hozhatunk létre. A kapcsolási rajz és a mérési eredmények az alábbiakban láthatók.

3. A tekercs induktivitásának meghatározása. A rendelkezésre álló tekercs messze

nem egy szolenoid, tehát az induktivitását kísérletileg kell meghatároznunk. A kondenzátordekádunk segítségével (C=0.5µF állásban) egy soros RLC áramkört hozunk létre és a TR 0163 típusú hangfrekvenciás generátorunkkal tápláljuk. Az R ellenállás a tekercs saját ellenállása. A jel nagyságát állandó értéken tartva (U=3V), változtatjuk a frekvenciát, és mérjük a kondenzátoron levő feszültséget. Az alábbi tábláza-

-99

-514

tokban láthatjuk az üres tekerccsel és a tekercsbe helyezett diódával mért adatokat. Ezekből a táblázatokból, de leginkább a belőlük megrajzolt grafikonokból más, a mágneses tér keltésével kapcsolatos igen fontos dolgokat is meghatározhatunk.

a. A tekercs üres																
v [Hz]	365	368	433	444	474	524	525	585	616	686	712	769	806	851	896	943
$\overline{U_{C}[V]}$	3.63	3.63	3.82	3.85	3.95	4.16	4.15	4.46	4.67	5.22	5.48	6.19	6.81	7.82	9.24	11.52
	973	1010	1026	1043	1059	1092	1121	1146	1173	1211	1255	1277	1282	1311	1364	1435
	13.72	17.59	20.26	23.13	26.18	29.97	26.63	21.33	16.80	12.36	9.30	8.19	8.00	6.90	5.47	4.23
b. A te	b. A tekercsben benne van a dióda															
v [Hz]	346	405	425	496	517	563	617	660	715	775	798	825	841	852	861	870
U _C [V]	3.77	4.02	4.13	4.59	4.76	5.23	5.96	6.79	8.33	10.86	12.50	14.69	16.00	16.80	17.30	17.75
	875	880	888	893	901	917	928	937	948	969	992	1031	1100	1142	1199	1257
	17.93	17.91	17.60	17.30	16.80	15.71	14.70	13.92	12.92	11.23	9.69	7.70	5.52	4.62	3.83	3.20

4. Az elektron fajlagos töltésének meghatározása. A kísérleti kapcsolás tömbrajza a

mellékelt ábrán látható. A "Didactica" típusú tápforrást az Elektronikus stabilizáló áramkörhöz kapcsoljuk, ez egyenárammal táplálja azt a tekercset, amely a 31118 típusú vákuumdióda katódjával koncentrikusan egy longitudinális mágneses teret hoz létre. A dióda anódját a milliampermérőn keresztül a gyorsítófeszültségre kötjük. A cső fűtését ellenállásokon keresztül 6,3V váltófeszültségre kapcsoljuk. A dióda bemelegedése után elektronok lépnek ki a katódból és a kezdősebességük, vagy a gyorsítófeszültség hatására az anód felé tartanak, és néhány száz mikroamper nagyságrendű anódáramot hoznak létre.

A kísérlet fizikai alapjai. Egy vákuumdióda katódjából kis sebességű elektronok lépnek ki, és egy gyenge elektromos térben felgyorsulva az anód felé tartanak. Az elekt-

ronok az egyidejű transzverzális mágneses térben a Lorentz-erő hatására egy körívet írnak le. A pálya görbületi sugara egyértelmű összefüggésben áll a mágneses tér intenzitásával. A mágneses tér növelése esetén a görbületi sugár csökken, majd egy kritikus érték felett az elektronok többé már nem érik el az anódot, az anódáram hirtelen lecsökken. Az elektroncső fizikai felépítése alapján meghatározható a legkisebb kör-

pálya mérete, illetve innen kiszámítható az elektron fajlagos töltése. A fajlagos töltés meghatározásának ezt a módját magnetron-módszernek nevezték el.

a. Termikus elektronok. Tanulmányoztuk az I_a[nA] anódáram változását a tekercsen átfolyó I₀[mA] áram függvényében. A tranzverzális mágneses térben, gyorsítás nélkül mozgó elektronok pályáját leíró egyenletek eléggé egyszerűek, de az igen kicsi áramok mérése nagyon nehézkes. Az igen kis áramok meghatározására A dióda fékezési üzemmódban kísérletnél használt módszert alkalmaztuk. A gyorsítási feszültség U_a=0,0V. A kísérleti adatokat az alábbi táblázatban foglaltuk össze.

a. Termikus elektronok ($U_a = 0,0 V$)																	
I ₀ [mA]	56.5	70.0	105.0	108.0	126.0	126.0	129.6	145.5	145.5	146.0	151.0	155.5	157.0	158.0	158.0	168.0	172.0
I _a [nA]	387	386	380	376	362	353	350	329	326	290	303	294	266	265	275	247	227
	172.0	172.0	178.5	182.0	182.0	184.0	185.0	188.0	188.0	188.5	189.0	189.0	195.0	200.5	201.0	202.0	203.5
	226	205	179	155	168	160	150	133	142	150	158	136	109	88	86	79	65
	205.0	208.0	209.5	211.0	213.0	214.0	222.0	226.0	239.0	244.0	265.0	268.0	283.0	308.0	328.0	371.0	439.0
c	72	61	64	55	49	43	37	29	33	13	19	5	14	2	7	4	3

b. Gyorsított elektronok. Tanulmányoztuk az I_a[μA] anódáram változását a tekercsen átfolyó I₀[mA] áram függvényében. A tranzverzális mágneses térben, gyorsított elektronok pályáját leíró egyenletek igen komplexek, de a száz μA nagyságú anódáramok mérése elég könnyű. A gyorsítási feszültség U_a=19,5V. A kísérleti adatokat az alábbi táblázatban foglaltuk össze.

b. Gyors	ított el	ektror	ok (U	a= 19,	5 V)												
I ₀ [mA]	86	121	155	172	197	217	241	256	281	306	329	346	381	422	458	477	521
I _a [µA]	865	864	864	862	865	858	839	820	696	544	458	415	342	279	233	214	173
	578	631	661	687	718	722	775	820	845	861	874	877	880	887			
5	150	136	129	126	123	122	119	115	114	113	113	112	112	113			

A résztvevők számára is hozzáférhető kísérleti berendezést az alábbi képen láthatjuk.

D. Feladatok. Az adatfeldolgozási verseny résztvevői már megszokták, hogy konkrét feladatok helyett ködösített dolgokat mondok. A fizikustól soha sem kérik, hogy egy bizonyos dolgot fedezzen fel. Ő elemzi az összes elvégzett kísérletet, de leginkább a kísérlet mérési körülményeit, és megpróbál összefüggéseket találni közöttük. A mérésekből grafikonokat rajzol, ha nem derül ki belőlük semmi, eldobja őket és más módon rajzol újakat, de egyszer csak megtalálja a különböző kísérleteket összekötő kapcsot. A diákjaim megszokták, hogy a tanáruk, ha a magyarázata közben értetlenséget lát, akkor egészen másról kezd fecsegni, egy analógián keresztül mutatván be a megoldás kulcsát. Figyeljétek jól a kísérlet bemutatását, a legfontosabb dolgokat kicsi, de ide nem illőnek látszó dolgokba rejtem el, ahogyan a fizikus valóságban összeköti az általa kutatott természet számtalan jelenségét. Legyetek egyszer igazi fizikusok! Sok sikert kívánok!

A feladatot **dr. BARTOS-ELEKES István, a Nagyváradi ADY Endre Elméleti Líceum** fizikatanára készítette. A kísérletet **NAGY Zsolt**, a Temesvári Műegyetem másodéves diákja szerelte össze. SCHWARTZ 2009 Emlékverseny A TRIÓDA díj-ért kitűzött feladat megoldása ADY Endre Líceum Nagyvárad, Románia 2009. november 7.

Az elektron fajlagos töltésének meghatározása a magnetron módszerrel

A szerző által ajánlott teljes megoldás, a diákoktól sokkal kevesebbet vártunk el.

Általános megállapítások a hat kísérlettel kapcsolatban. Az elektroncső a mai diákgeneráció számára egy kevésbé ismert eszköz. A valamikori TV technikában használt egyenirányító dióda (**3Ц18II**) meghatározó része az egész kísérletnek, de itt nem diódaként alkalmazzuk, hanem könnyen hozzáférhető elektronforrásként. A katódból kilépő elektronokat a katódhoz képest pozitív anód összegyűjti, és néhány száz µA-es anódáramot hoz létre. Az elektronokat a mozgásukra merőleges mágneses térben eltérítjük és körpályára kényszerítjük. Ha a mágneses tér elég erős, akkor az elektronok már nem érik el az anódot, az áram nagysága lényegesen lecsökken. A mágneses térben leírt körpálya sugarának megállapításához ismernünk kell az elektron sebességét (v), illetve a mágneses indukció (B) nagyságát. Az elektron sebességét a dióda anódkarakterisztikájából állapítjuk meg, a mágneses indukciót pedig a tekercs induktivitásának (L) ismeretében számítjuk ki. Megállapíthatjuk, hogy az első négy kísérlet az utolsó kettőnek mérési adatokat és feltételeket szolgáltat, ezért igen nagy figyelemmel dolgozzuk fel a négy kísérlet mérési adatait.

1. A dióda gyorsított üzemmódban. A mérési sor adatai a gyorsítási anódkarakterisztikát

írják le. A mellékelt grafikonból jól láthatjuk, hogy érvényesül az $I_a=kU_a^{3/2}$ -szerű, az irodalomból ismert háromkettedes törvény. A későbbiekben használt $U_a=19,5V$ gyorsítási feszültség kisebb az itt alkalmazott 19,8 V-nál, és az anódáram görbéje egyáltalán nem mutatja jelét a telítődésnek, vagyis az elektronok sebességét a gyorsításukra felhasznált munka alapján számíthatjuk ki:

 $v = \sqrt{2eU_a/m} \approx 2600 \text{ km/s}$

Következtetés: ez a dióda a gyorsítási üzemmódban megfelelő elektronforrásnak tűnik a fajlagos töltés meghatározására.

2. A dióda fékezési üzemmódban. A grafikon, de inkább a táblázat adataiból meglepődve vesszük észre, hogy az elektronok gyorsítás nélkül is eljutnak az anódig, ezeket az elektronokat termikus elektronoknak nevezzük. Az egyre nagyobb fékezőfeszültséggel megállítjuk a katódból kilépő elektronokat. Így meghatározható a termikus elektronok legnagyobb, valamint a legvalószínűbb sebessége. A legnagyobb sebességnek a kísérlet szempontjából csak információs jelentősége van, a legvalószínűbb sebesség azonban a termikus elektronok által leírt legvalószínűbb körpálya adatainak kiszámításához nyújt majd segítséget. A mellékelt grafikon a dióda fékezési karakterisztikája. Látható, hogy a leggyorsabb elektronokat is le tudjuk fékezni az 1000 mV-os fékezőfeszültséggel. Innen kiszámítható a termikus elektronok legnagyobb sebessége: $v_{max} = \sqrt{2eU_a/m} \approx 593$ km/s. A legkisebb négyzetek elve segítségével a mérési pontokra egy negyedfokú polinom függvényt illesztünk. A függvény elsőrendű deriváltja, egy bizonyos fékezési feszültségnél, a feszültség megváltoztatásakor létrejövő áram-

változás mértékét adja meg μ A/V-ban. Ez az áramváltozás a nulla anódfeszültségnél a legnagyobb *(legmeredekebb a görbe),* itt a nagyon kis sebességű elektronokat fékezzük le. A másodrendű derivált az áramváltozás változási sebességét írja le μ A/V²-ben. Se-

gítségével megkapjuk az előbbi, harmadfokú görbe inflexiós pontját, ahol a legtöbb elektront vonjuk ki a "forgalomból". Az inflexiós ponti fékezőfeszültségből számíthatjuk ki a legvalószínűbb sebességet, mert ilyen sebességű elektronból van a legtöbb. A másodrendű derivált *(ez egy másodfokú függvény)* maximuma megadja az inflexiós ponti legvalószínűbb sebességű elektronokhoz tartozó fékezőfeszültséget. Ez a feszültség a másodfokú illesztési görbe egyenletéből, vagy a grafikonból is megkapható: U_p=-0.263V. A termikus elektronok legvalószínűbb sebessége:

$$v_p = \sqrt{2eU_p} / m \approx 300$$
 km/s.

Ez várható érték volt, hiszen ennek vala-

hol a sebesség-eloszlási görbe szimmetria középpontjában kell lennie. A legvalószínűbb sebességet egyszerűbb, de kevésbé pontos módon is megkaphatjuk. "Kézzel" deriváljuk a dióda fékezési karakterisztikáját, rendre, félvoltonként megmérjük az érintő iránytényezőjét, és azonnal µA/V egységekben fejezzük ki *(tengelymetszetes alak)*. A mellékelt grafikonon jól látható az inflexiós pont, illetve a hozzátartozó U_p fékezőfeszültség. A módszer előnye, hogy számítógép, sőt felső matematikai ismeretek nélkül is megrajzolható, megérthető.

Következtetés: ez a dióda a fékezési üzemmódban is megfelelő elektronforrásnak tűnik a fajlagos töltés meghatározására.

3. A tekercs induktivitásának meghatározása. A tekercs segítségével állítjuk elő azt a transzverzális mágneses teret, amelyben az elektronok mozgása körpályára kényszerít-

hető. A tér értékének kiszámíthatósága és a homogeneitása az elsőrendű követelmény az e/m meghatározás pontossága szempontjából. A kísérletből egyértelműen látható, hogy a rezonanciafrekvencia erősen lecsökken, ha a dióda a tekercsben van, ez a ferromágneses anyagok jelenlétére utal. Az is látható, hogy a második esetben a rezonanciagörbe maximuma szinte felére csökken, a sávszélesség nő, ez Foucault-áramok által okozott veszteségekre utal, vagyis a ferromágneses anyagok bizonyára az elektroncső szerkezetéhez tartozó nagyobb acéldarabok lehetnek. A Thomson képlet segítségével kiszámíthatjuk a tekercs induktivitását: L=1/($4\pi^2 v^2 C$). Az üres tekercsre L=42,5 mH, a diódás tekercsre pedig L_D=66,2 mH kapunk. A rendelkezésre álló áramforrás által adható legnagyobb feszültség (25V) és a tekercs 27Ω-os ellenállása meghatározza a tekercsen átfolyó legnagyobb áramerősséget: Imax=0,93A. A tekercs átlagkeresztmetszete: $\overline{S} = \pi \cdot (D_2 + D_1)^{2/16} = 0.804 \cdot 10^{-3} \text{ m}^2$. Kiszámíthatjuk az üres tekerccsel elérhető legnagyobb mágneses indukciót: \mathbf{B}_{max} =LI_{max}/(n \overline{S})=**30,6 mT**. Figyelembe véve a gyorsított elektron elérhető legnagyobb sebességét, kiszámítható a legkisebb körpálya átmérője: D_{min} = 2mv_{max}/eB_{max}=0,96 mm, ami bőven "belefér" a katód és az anód közti térbe, tehát a tekercs alkalmas a fajlagos töltés meghatározásához szükséges mágneses tér keltésére. Fennebb azt is láttuk, hogy a diódában ferromágneses anyagok vannak, ezek az elektroncső belső szerkezeti elemei, az anód és a katód nikkelt is tartalmazó alkatrészei. A keltett tér átlagértéke csak L_D/L=1,56-szor nagyobb a ferromágneses anyagok nélkül mérhető értéknél, de egyes helyeken, a ferromágneses anyagok közelében, ez az érték a száznál is nagyobb lehet.

A négy előkészítő kísérletből levonható következtetések:

- A dióda, mint elektronforrás, tökéletesen megfelel ebben az e/m kísérletben
- A tekercs, mint a mágneses tér létrehozásához szükséges eszköz tökéletesen megfelel ebben az e/m meghatározását célzó kísérletben
- A kettő együtt, a ferromágneses anyagok miatt messziről sem felel meg az e/m meghatározása kísérletében. Óriási hibák várhatók!

4. Az elektron fajlagos töltésének meghatározása. Lassan növeljük az elektromágnesre kapcsolt feszültséget, majd kiszámítva az I₀ áramot ábrázoljuk az I_a anódáramot az I₀, az elektromágnesen átfolyó áram függvényében. A kritikus mágneses tér elérésekor az

anódáram meredek letörésével számolhatunk, ezért ezen a szakaszon az anódáramlépéseket állítjuk be, így elegendő mérésünk lesz a görbe meghatározásához. A két könyökszakasz környékén sok méréssel biztosítjuk a mérésekre illesztett görbe meghatározását. A termikus elektronok esetében látható, hogy a mágneses tér egy bizonyos értékéig az anódáram lényegében nem változik, majd erőteljesen csökkenni kezd. A mérések összekötése újból a legkisebb négyzetek elve alapján történik két szakaszban, mivel nem található olyan polinom, amely megfelelne az ilyen típusú méréseknek. A nagyobb I₀ értékeknél jól látható a hatodfokú függvény "oszcillációja" a kevés és szétszórt mérési pont miatt. A kritikus pontra kapott letörési áram értéke: I_{cT}=180 mA. A gyorsított elektronok esetében is megfigyelhető, hogy a mágneses tér kis értékeinél az anódáramot nem befolyásolja mágneses tér jelenléte, de gyorsított elektronokról lévén szó, ez a letörési érték jóval nagyobb az előbbinél, I_{cA}=360 mA. Az előbbi kísérlethez képest egy másik különbség is adódik: a letörési szakasz meredeksége kisebb az előbb látotténál. A mérési pontok jobb összetartása miatt az összekötésüket sikerült megoldani két szakaszban, szintén magas fokú polinomok segítségével.

Az észlelt jelenség magyarázata. A katód által kibocsátott elektronok egy tranzverzális mágneses térben mozognak. A reájuk ható Lorentz erő hatására egy körívet írnak le, melynek görbületi sugara a tranzverzális mágneses tér erősségétől függ. Minél nagyobb a mágneses tér indukciója, annál kisebb a görbületi sugár. Egy bizonyos érték után az elektronok nem érik el az anódot, és az anódáram hirtelen lecsökken. A kritikus érték a gyorsítófeszültségtől és az elektroncső mechanikai felépítésétől függ.

Az elektron fajlagos töltésének (e/m) meghatározása a magnetron módszerrel. Az anódáram lényeges csökkenését két jól megkülönböztethető esetben vizsgáljuk.

a. Termikus elektronok, U_a=0. A mellékelt ábrán a dióda belső felépítésének keresztmetszete látható. Az ábra alapján felírható a következő összefüggés:

$$d_2/2 = R + \sqrt{R^2 + (d_1/2)^2}$$
,

ahonnan megkapjuk az anód elérésének geometriai feltételét:

$$R = \frac{d_2^2 - d_1^2}{4d_2}$$

A fizikai feltétel a Lorentz-erő és a röpítő erő egyensúlyából származik:

 $mv_0^2/R = ev_0B_c.$

A geometriai és fizikai feltételeket összevetve a

$$\frac{d_2^2 - d_1^2}{4d_2} = \frac{mv_0}{eB_c}$$
 [1] egyenletet kap-

juk. B_c a kritikus mágneses indukció értéke, amely az I_a=f (I_o) görbe inflexiós pontját jelöli. A kritikus mágneses indukció értékét a B_c-nek megfelelő I_c kritikus áram értéke alapján számíthatjuk ki: $B_c = L_D I_c / n \overline{S}$, ahol \overline{S} a tekercs átlagkeresztmetszete. Az [1] egyenletben elvégezzük a szükséges műveleteket és megkapjuk az elektron fajlagos töltése abszolút értékének számítási képletét (a Lorentz erő skaláris formában való felírásával elveszítettük az elektron töltésének előjelét):

$$\frac{|e|}{m} = \frac{4d_2v_0}{d_2^2 - d_1^2} \cdot \frac{1}{B_c} = \frac{4d_2v_p}{d_2^2 - d_1^2} \cdot \frac{nS}{L_D I_c}, \text{ abol a } v_0 = v_p = 300 \text{ km/s}$$
^[2]

b. Gyorsított elektronok, U_a> 0. Felírjuk a Lorentz-erő forgatónyomatéka hatására létrejövő pályanyomaték változási sebességét. A tagokat egyenként felírva egy kettős vektorszorzathoz jutunk

$$\frac{dL}{dt} = \vec{M} = \vec{r} \times \vec{F}_L = \vec{r} \times (-e\vec{v} \times \vec{B}) = -e\vec{v}(\vec{B} \cdot \vec{r}) + e\vec{B}(\vec{v} \cdot \vec{r})$$
[3]

A mágneses indukcióvektor merőleges az elektron mozgási síkjára, így a **[3]** egyenletben $\vec{B} \cdot \vec{r} = 0$, tehát a Lorentz-erő forgatónyomatéka:

$$\vec{M} = e\vec{B}(\vec{v}\cdot\vec{r}) = e\vec{B}(\vec{r}\cdot\vec{v})$$

Észrevehető, hogy

 $\vec{r} \cdot \vec{v} = \vec{r} \cdot \frac{d\vec{r}}{dt} = r \frac{dr}{dt} = \frac{1}{2} \frac{d}{dt} (r^2)$

Az eddigieket felhasználva újból felírhatjuk a pályanyomaték változási sebessége képletét:

$$\frac{d\vec{L}}{dt} = \frac{1}{2} \cdot \frac{d}{dt} (r^2) \cdot e\vec{B} \text{, ahonnan:} \quad \frac{d\vec{L}}{dt} - \frac{1}{2} \cdot \frac{d}{dt} (r^2) \cdot e\vec{B} = 0$$

Ezt a kifejezést teljes deriváltként is felírhatjuk: $\frac{d}{dt}(\vec{L} - \frac{1}{2} \cdot e\vec{B} \cdot r^2) = 0$

Mivel a derivált értéke zérus, a deriválandó kifejezés állandó kell, hogy legyen:

$$\vec{L} - \frac{1}{2} \cdot e\vec{B} \cdot r^2 = \vec{c}$$
^[4]

A [4] kifejezés állandó marad a katódból való kilépéstől az anód eléréséig. Indexeljük a kilépési értékeket S-sel (Start), az érkezésieket T-vel (Target). A [4] kifejezés így alakul:

$$L_{S} - \frac{1}{2} \cdot eB_{c} \cdot r_{S}^{2} = L_{T} - \frac{1}{2} \cdot eB_{c} \cdot r_{T}^{2}$$
[5]

A kezdeti és végső feltételek alapján felírhatjuk: $L_S=0$ (*elhanyagoljuk a termikus elektronok kilépési sebességét*), $r_S=d_1/2$, $r_T=d_2/2$, $L_T=mvd_2/2$. Behelyettesítjük az [5] egyenletbe, majd kifejezzük az anódhoz való érkezés sebességét:

$$v = \frac{eB_c(d_2^2 - d_1^2)}{4md_2}$$
 [6]

A gyorsító feszültség hatása alatt az elektronok végsebessége a következő képlettel számítható ki:

$$v = \sqrt{2eU_a/m}$$
^[7]

A [6] és [7] kifejezéseket összevetve, a négyzetre emelés után megkapjuk az elektron a fajlagos töltése abszolút értékének számítási képletét (A Lorentz erő felírásánál már figyelembe vettük az elektron negatív töltését):

$$\left|\frac{e}{m}\right| = \frac{32d_2^2}{(d_2^2 - d_1^2)^2} \cdot \frac{1}{B_c^2} \cdot U_a$$
[8]

A [8] kifejezésbe behelyettesítjük a kritikus mágneses indukció értékét és

$$\left|\frac{e}{m}\right| = \frac{32d_2^2}{(d_2^2 - d_1^2)^2} \cdot \frac{n^2 S^2}{L_D^2 I_c^2} \cdot U_a$$
[9]

Az e/m számértékei a mért adatok alapján. Az \overline{S} értéke a konstrukciós adatok alapján $\overline{S} = \pi \cdot (D_2 + D_1)^2 / 16 = 0,804 \cdot 10^{-3} \text{ m}^2$. A mágneses indukció számításához a ferromágneses anyagot is tartalmazó tekercs induktivitását (L_D) használjuk.

• A termikus elektronokra a megadott, vagy kiszámított értékek alapján $(d_1=0.9 \text{ mm}, d_2=9.8 \text{ mm}, v_p=300\cdot10^3 \text{ m/s}, I_{cT}=180 \text{ mA}, L_D=66.2 \text{ mH}, n=1600, \overline{S}=0.804\cdot10^{-3} \text{ m}^2)$ a [2] egyenletből következőket kapjuk:

$$\left|\frac{e}{m}\right| = \frac{4d_2v_p}{d_2^2 - d_1^2} \cdot \frac{n\overline{S}}{L_D I_{cT}} = 1,33 \cdot 10^{10} \text{ C/kg.}$$
[10]

 A gyorsított elektronokra a megadott, vagy kiszámított értékek alapján (d₁=0,9 mm, d₂=9,8 mm, U_a=19,5 V, I_{cA}=360 mA, L_D=66,2 mH, n=1600, *S* =0,804·10⁻³ m²) a [9] egyenletből következőket kapjuk:

$$\left|\frac{e}{m}\right| = \frac{32d_2^2}{(d_2^2 - d_1^2)^2} \cdot \frac{n^2 S^2}{L_D^2 I_{cA}^2} \cdot U_a = \mathbf{1,93 \cdot 10^{10} C/kg}.$$
 [11]

5. A kísérlet eredményeinek értékelése. A bemutatott módszer segítségével meghatározható az elektron fajlagos töltése. A kísérlet során az irodalmilag elfogadott értéknél (|e/m|=1,759·10¹¹ C/kg) szinte egy nagyságrenddel kisebb értéket kaptunk az e/m-re, ami komoly konstrukciós hibákra utal. A kísérleti fizikus ilyenkor megkeresi a készüléke hibáit, hogy újabb berendezése segítségével pontosabb eredményeket kapjon, majd újabb készüléket épít... Ennek a dolgozatnak épp ez volt az érdekessége: megtalálni a mérési hibák okát!

A főbb hibaforrásokat a következőkben tudjuk összefoglalni:

- A szokásos mérési hibákat az igényes mérőműszerek (±0,5% osztályúak) és a nagyon sok mérési pont segítségével, jóval az ilyenkor elvárható érték alá szorítottuk. Feltételezhető, hogy minden mérési hibaforrást összeadva, az így kialakuló összes hiba nem lépné túl a ±2%-ot. Az itt keletkezett hiba ennél sokszorosan nagyobb, ennek csak konstrukciós oka lehet.
- Kísérletileg is bizonyítottuk, hogy az elektroncső belsejében vannak ferromágneses alkatrészek, tehát a kialakult mágneses tér nem homogén, és helyenként jóval erősebb a kiszámítottnál. Az elképzelt kör alakú pályáknak nincs semmilyen valóságalapja.
- A ferromágneses anyagok jelenlétét közvetlen módon is bizonyítottuk, amikor egy diódát a konstrukciós adatok megmérése érdekében **finoman feltörtünk** és az alkatrészeket a mágnes **erősen vonzotta**.
- A tekercs túl rövid, ezért az általa keltett mágneses tér elfogadhatóan homogén része jóval kisebb a katódnál, így nem elégséges a tér hosszanti homogeneitása. A dióda közepén a tér erősebb, tehát hamarébb létrejön az anódáram letörése. A szélek felé ez a jelenség csak nagyobb áramoknál jelentkezik, hiszen az áram letörése szempontjából csak a tranzverzális komponensről beszélhetünk. A két görbe különböző letörési meredeksége a vízszintes irányú "nagyításból" származik (nagyobb áramoknál játszódik le az előbbi jelenség). A gyakorlatban sokkal hosszabb tekercset alkalmaznak, ilyenkor az anódáram letörése sokkal meredekebb (mindenütt azonos a tranzverzális komponens, azonosak a sebességek, tehát az elektronok egyszerre érik el, vagy egyszerre nem érik el az anódot).
- A gyakorlatban molibdénből készült anódot használnak, illetve kerülik a ferromágneses anyagból készült katódot és belső tartószerkezeteket. Az anód átmérője jóval nagyobb, tehát pontosabb a pálya, nagyobb gyorsító feszültségeket alkalmaznak, így a termikus elektronok kilépési sebessége kevésbé befolyásolja az elektronpálya kialakulását.
- A kísérlet csak a mérési módszer elvének bemutatására szolgált, az igazi hozadéka, hogy rávilágított a hiba megkeresésének szükségességére és lehetőségére.

dr. BARTOS-ELEKES István, ADY Endre Líceum, Nagyvárad.